Equational Varieties of Boolean Functions via the Hsp Theorem

نویسنده

  • STEPHAN FOLDES
چکیده

A variant of a theorem of Ekin, Foldes, Hammer and Hellerstein concerning equational characterizations of Boolean function classes is proved using methods of universal algebra. The proof is not constructive but establishes a direct connection with the Birkhoff-Tarski HSP Theorem and the theory of equational classes of universal algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Eilenberg Theorem for Arbitrary Languages

In algebraic language theory one investigates formal languages by relating them to finite algebras. The most important result along these lines is Eilenberg’s celebrated variety theorem [7]: varieties of languages (classes of regular finite-word languages closed under boolean operations, derivatives and preimages of monoid morphisms) correspond bijectively to pseudovarieties of monoids (classes...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity

This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...

متن کامل

Semi-linear Varieties of Lattice-Ordered Algebras

We consider varieties of pointed lattice-ordered algebras satisfying a restricted distributivity condition and admitting a very weak implication. Examples of these varieties are ubiquitous in algebraic logic: integral or distributive residuated lattices; their {·}-free subreducts; their expansions (hence, in particular, Boolean algebras with operators and modal algebras); and varieties arising ...

متن کامل

FUZZY EQUATIONAL CLASSES ARE FUZZY VARIETIES

In the framework of fuzzy algebras with fuzzy equalities and acomplete lattice as a structure of membership values, we investigate fuzzyequational classes. They consist of special fuzzy algebras fullling the samefuzzy identities, dened with respect to fuzzy equalities. We introduce basicnotions and the corresponding operators of universal algebra: construction offuzzy subalgebras, homomorphisms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007